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ABSTRACT

A two-dimensional shear-deformable beam element is developed in this investigation for
the analysis of the large rotation and large deformation. Using the absolute nodal
coordinate formulation and a éontinuurﬁ mechanics approach, the assumption of Euler-
Bernoulli and Timoshenko beam theories are relaxed. The effect of the shear deformation
is accounted for without the need for introducing Timoshenko’s shear coefficient. By
using the absolute coordinates, the nonlinear strain-displacement relationships are used to
define a relatively simple expression for the elastic forces, while the mass matrix of the
beam remains constant. As a consequence, the centrifugal and Coriolis forces are
identically equal to zero. Surprisingly, the more general model developed in this
investigation leads to a significant saving in computer time as compared to non-shear

deformable models presented in previous investigations.




1. INTRODUCTION

In Euler-Bernoulli beam theory it is assumed that the cross-section remains rigid and
perpendicular to the neutral axis of the beam [1, 13]. In this theory, the effect of the shear
deformation is neglected. In Timoshenko beam theory on the other hand, the cross-
section does not remain perpeﬁdicular to the beam neutral axis. Nonetheless, the cross-
section remains rigid. A shear coefficient is introduced in order to account for the shear
deformation [12]. In this investigation, a two-dimensional shear-deformable beam
element based on the non-incremental absolute nodal coordinate formulation [10] is
developed. In this approach, only absolute coordinates and global slopes are used to
define the element nodal coordinates without the need for using infinitesimal or finite
rotations. With the definition of the nodal coordinates in the global coordinate system, no
transformation is required to determine the element inertia or elastic forces. Using this
coordinate representation with the appropriate element shape function, exact modeling of
the rigid body dynamics can be achieved. Using the non-incremental absolute nodal
coordinate formulation, the resulting mass matrix of the finite element is a constant
matrix and the centrifugal and Coriolis forces are identically equal to zero. Another
advantage of using the absolute nodal coordinate formulation is its simplicity in
formulating the generalized forces and imposing some joint constraints.

A problem encountered in the implementation of the non-incremental absolute
nodal coordinate formulation is the formulation of the elastic forces. Shabana, et al [6, 8,
9, 10, 11] proposed two methods for formulating the elastic forces of the two-
dimensional beam element. In the first method, a local element coordinate system is
introduced for the convenience of describing the element deformation. This approach
leads to a complex expression for the elastic forces even when a linear elastic model is
used. In the second method [3] a continuum mechanics approach is used to obtain the
elastic forces without introducing the local element coordinate system. In this continuum
mechanics approach, nonlinear strain-displacement relationships must be used in order to
obtain zero strain under an arbitrary rigid body motion. Nonetheless, the previous models
developed using the continuum mechanics approach are based on Euler-Bernoulli: beam

theory which dose not account for the shear deformation. It is the objective of this




investigation to develop a model for the elastic forces for two-dimensional beam
elements that accounts for shear deformation by using a general continuum mechanics
approach without introducing a local element coordinate system. This new model relaxes
‘the assumptions of Euler-Bernoulli and Timoshenko beam theories and does not require
the use of a shear coefficient.

This paper is organized as follows. In section 2, the displacement field and the
kinematic equations of the new two-dimensional shear-deformable beam element are
presented. The constant mass matrix of the beam element that accounts for the rotary
inertia is defined in section 3. In section 4, the formulation of the elastic forces using the
general continuum mechanics approach is discussed. The formulations of the generalized
external forces and moments associated with the element nodal coordinates using the
virtual work are presented in section 5. In section 6, the equations of motion are
presented and the use of the proposed model in the analysis of the large deformation of
simple and multibody mechanical systems is demonstrated. Section 7 presents a summery

and the conclusions drawn from the study presented in this paper.
2. KINEMATICS OF THE SHEAR-DEFORMABLE BEAM

For the two-dimensional shear-deformable beam element, the displacement field is

defined in the global coordinate system as

a +a|x+a2y+a3xy*l-a4x2 +a5x3 1)
r=

by+byx+byy+byxy+b,xt +bsx

where r, as'shown in Fig. 1, is the global position vector of an arbitrary point on the beam
element cross-section, a; and b; are the polynomial coefficients, and x and y are the spatial
coordinates defined in a beam coordinate system. The spatial coordinate x is chosen to be

along the beam axis (0<x</), where / is the element length. Note that, the assumed

displacement field depends on y in order to account for the shear deformation.




In the simplified Euler-Bernoulli beam theory, the effect of the shear deformation
is neglected [1]. The basic assumption in the simplified Euler-Bernoulli beam théory is
that the cross-section of the beam remains normal to the beam neutral axis as shown in
Fig. 2a. The beam cross-section at any point along the beam neutral axis can be defined
by the Frenet frame. The Frenet frame has one of its axis tangent to the beam neutral axis

and the other axis .perpendiculaf to the beam neutral axis [7]. The tangent vector t can be
defined by 6r/ox. In a shear-deformable beam model, the cross-section of the beam does

not remain normal to the neutral axis, as shown in Fig. 2b. As a result, the tangent to the
neutral axis cannot be used to define the cross-section. In order to demonstrate that the
shape function of Eq. 1 accounts for the shear effect, consider an arbitrary vector Ar,
which is defined in the beam cross-section as shown in Fig. 3. Using the displacement

field defined by Eq. 1, it can be shown that

or
Ar=r-r,_,=y— 2
r=r-r,, yay (2)

where r is the global position vector of an arbitrary point P in the cross-section with

coordinates (x,y), and r,_,is the position vector of the corresponding point P, on the
beam centerline with coordinates (x,0). The preceding equations show that any arbitrary
vector drawn on the beam cross-section can be defined by the vector ar/dy, and as a
consequence the vector dr/dy defines the cross-section of the beam. In the absolute

nodal coordinate formulation, the global position vector of an arbitrary point on the beam -

can be written as

r=m=Se 3)

6]

where S is the global element shape function, and e is the vector of nodal coordinates.

The vector of the element nodal coordinates e is given by

T
e=[el € € €& €& € € & & ¢y ¢ elZ] 4.




The vector of nodal coordinates includes the global displacements

g = "1|x=o > ) ="2|x:0 s & ="1|x=1 > € =1y |x=i
and the global slopes of the element nodes that are defined as
o
S 1 I | I
ox x=0 Ox x=0 ay x=0 ay x=0
or, or 0Or, or
eg—gl— ’ elo:gz ? e“=-—1~ s €y = 2
x x=| x=/ ay x=[ ay x=/

The element shape function S must have a complete set of rigid body modes that describe
arbitrary rigid body translational and rotational displacements. Using the element nodal

coordinates given by Eq. 4, the element shape function can be defined as follows

S=[s1 0 Is, 0 Is; O s, 0 Is; 0 Isg 0} (5)

0 81 0 ISZ 0 1S3 0 Sy 0 ISS 0 ls6

where the functions s,=s(&,#) are defined as

s =1-387+28, s =&-2n"+&, 53 =147
5, =38228, ss=-E2 418, S =&n

and & =§, n= %, [ is the element length.

3. CONSTANT MASS MATRIX

The global position vector of an arbitrary point on the shear-deformable beam is given by

Eq. 3. By differentiating this equation with respect to time, the absolute velocity vector




can be defined as r=Sé. This vector can be used to define the kinetic energy of the

element as

dpre s L faren e Larag
T—zl;"pr rdV—ze I;l‘pS Sdv e=_¢ M,é (6)

where V' is the volume, p is the mass density of the beam material, and M, is the mass
matrix of the element. The mass matrix in Eq. 6 is constant and symmetric. Using the

shape function given by Eq. 5, the mass matrix is given by
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where m is the total mass of the finite element, / is the element length, J; is the first

moment of mass defined as J;= J.p ydV , and J; is the second moment of mass defined as
14

J2=Ipy2dV .
v




4. ELASTIC FORCES

In this section, the nonlinear strain-displacement relations are used to develop an
expression for the elastic forces of the beam element. The deformation gradient can be

defined as [2]

on o
bl bl S,e Si,e
PERCLI R T (8)
ax ai 9_1;2_ Szxe Szye
dx Oy
8S; 38, : . .
where S, = a2 S, =5 and S; is the i th row of the element shape function. The
x y
Lagrangian strain tensor €,, can be written as
T T
S,e-1 S
am=l(JTJ—[)=l e ‘ae e Sce ©)
2 2| ¢ S.e eTS,,e—-l

where I is the identity matrix, S,=S[,S,+S.,S,,, §S,=S[S,+S]S,, and
S. =S[;S, +S7,S,, . It should be noted that strain tensor is symmetric thus it can written in

a vector form as
e=[e & 6] (10)

where & = %(eTSae—l) , £ = %(eTS,,e—l), and & = %eTsce .

A general expression for the strain energy can be written using the strain vector €

and the stress vector o=[0, 0, o; ]T as follows [4, 5]

i
U—zjcedV (11)




Using the constitutive equations, the stress vector is related to the strain vector by
c=Eeg (12)

where E is the matrix of the elastic constants of the material. For isotropic homogenous

material, the matrix E can be expressed in terms of Lame’s constants A and y as

A2u A 0
E<| 1 1424 0 (13)
0 0 2u

where A:—EK———, o= E
(1+v)(1-2v) 2(1+v)

, E is the Young’s modulus of elasticity, and v is the

Poisson’s ratio of the beam material. Using Eqs. 12 and 13, the strain energy can be

rewritten as

L
U—EJS EsdV (14)

The vector of the elastic forces Q, can be defined using the strain energy U as

_oU _
de.

Q! e'K (15)

where K is the stiffness matrix which can be written as

K =(1+2u)K, +1K, +2u K, (16)

where

K, =% [[Sae"s.e-1+8,"Se-n v,
14

1 ”
K, = ZV-[[S”‘ (€7S,e-1)+S,, (eTSae-l)]dV ,




K, =% chl(eTSae) v,
vV
Sa=S,+8%, 8, =S,+SI ,and 5, =S, +S].

Note that the general expression for the elastic forces obtained in this investigation using
the continuum mechanics approach and the nonlinear strain-displacement relationships is
much simpler than the expression obtained in previous investigations [6, 9] using the
element local coordinate system and linear strain-displacement relationships. The general
expression obtained in this paper automatically captures the effect of geometric

centrifugal stiffening.
5. FORMULATION OF THE GENERALIZED EXTERNAL FORCES

The virtual work can be used to develoi) the vector of the generalized external forces
[10]. The virtual work due to an externally applied force F acting on an arbitrary point on

the element is given by
SW,=F"or=F"Sde=Q e (17)

where r is the position vector of the point of application of the force, and Q, =S’F is the

vector of the generalized forces associated with the element nodal coordinates. For
example, the virtual work due to the distributed gravity of the finite element can be

obtained using the shape function and Eq. 17 as

I ! 1 !
0 pglSée=-mgl0 = 0 — 0 0 0 =~ 0 —= 0 0l|de 18
VI[ pg] g[ S 0 = 3 > } (18)

This defines the vector of generalized distributed gravity forces as

1 I !
— 0 -— 0 0| - (19
12 2 12




When an external moment M acts on the cross-section of the beam, the virtual

work due to this moment is given by
oW,, = M 5y (20)

where v is the angle of rotation of the cross-section. The orientation of a coordinate

system attached to the cross-section can be defined using the following transformation

matrix
or, 0n
. ~ ~ 2 2
Cf)s(y) -sin(y) 1 oy 0y ’ fe on . ar, o
sin(y) cos(y) | f|-0n on Oy oy
dy 0Oy
which yields
1 or, . 1 ox,
cos(y)=——, sin(y)=-———- (22)
=73, (=-%3,

Using these two equations, it can be shown that the virtual change in the cross-section

orientation angle can be defined as

%5(%]_%5(%]
0 0 0 0
sy=2¥_\0Y - y \ 8y

If a concentrated moment is applied for example at node A as shown in Fig. 4, the

(23)

generalized force vector due to this moment is defined as,

Mo, -Me

QM{oooofA2 f;oooooo} (24)




6. NUMERICAL EXAMPLES

Using the obtained expressions of the elastic and inertia forces, the equations of motion

can be obtained using the absolute nodal coordinates as
M,é=Q (25)

where Q is the vector of generalized nodal forces including the elastic force vector Q,

and external force vector Qy , and € is the vector absolute accelerations. As previously
mentioned, the centrifugal and Coriolis force vectors are equal to zero since the mass
matrix is constant.

In this section, two examples are considered in order to demonstrate the
performance of the proposed beam model. The two examples considered are the free
falling of a flexible pendulum under its own weight, and a four bar mechanism with a
flexible connecting rod.

The first example considered is the free falling two-dimensional beam shown in
Fig. 5. The beam is connected to the ground by a pin joint at one end. The beam has
length of 1.2 m, circular cross-sectional area of 0.0016 m?, second moment area 8.533E-
06, a mass density of 5540 kg/m’, Poisson’s ratio of 0.3, and a modulus of elasticity of
0.700E 06. The beam is initially horizontal with zero initial velocity and free to fall under
the effect of gravity. Two cases are considered in this example. In the first case, the
gravity constant is assumed to be 9.81 m/s® while in the second case, the gravitational
acceleration is increased to 50 m/s®. The simulations of the beam are performed using
different number of elements. Figure 6 shows the position of the tip point of the beam
using 6 and 12 finite elements when the gravity constant is equal to 9.81 m/s”. It is clear
from the results presented in this figure that there is a good agreement between the two
models. The results demonstrate that the solution converges with small number of
elements.

Since the falling pendulum is conservative system, the sum of the energy

components must remains constant, that is

10




> T+ U+ =const (26)
i

where T i is the element kinetic energy, U i is the element strain energy, Vi is the element
potential energy, and ne is the number of elements of the system. Figure 7 shows the
energy balance for 6-element fnodel. The results presented in this figure shows that the
total energy remains constant. The results obtained using the 6-element model are the
same as the results of the 12-element model. Figure 8 shows the displacement of the tip
point of both models under gravitational acceleration of 50 m/s>. Very small differences
between the two models can be observed. The energy balance obtained using the 6-
element model under the gravity constant of 50 m/s’ is shown in Fig 9. The same results
are obtained using the 12-element model. Figure 10 shows the large deformation
configurations of the falling beam at different time steps under gravitational acceleration
of 50 m/s* using 48 finite elements.

The shear-deformable model developed in this investigation relaxes the
assumption of Euler-Bernoulli beam theory. In this model, the cross-section does not
remain perpendicular to the beam centerline due to the effect of the shear deformation.
Figure 11 shows a comparison between the results obtained using this new model and the
Euler-Bernoulli beam model previously presented by Berzeri et al [3] who used a shape
function which does not depend on y. The results obtained in this figure are obtained
using 12 elements. It is important to point out that the shear-deformable model, because
of the dependence of the shape function on y, leads to a simpler expression for the elastic
- forces. More surprisingly, significant saving in computer time was achieved using the
shear-deformable model. It was observed that the shear-deformable model is two times
faster than the Euler-Bernoulli model. The results presented in Fig. 11 shows that there is
a very good agreement between the shear-deformable beam model and the model based
on the Euler-Bernoulli beam theory since a thin beam is used. When the cross-section
changed to 0.001 m* and second moment area 1.593E-06 m*, noticeable differences are
observed as shown in Fig. 12.

The shear-deformable model developed in this investigation also relaxes the

assumption of the Timoshenko beam theory since it allows for the plane deformation of

11




the cross-section, that is the cross-section remains plane but not rigid. The deformation of

the cross-section can be measured by the deviation of the norm of the vector or/dy from

one. Figure 13 shows the norm of this vector at node 5 and node 9 as a function of time in
the case of free falling pendulum and gravity constant of 50 m/s.

The second example considered in this numerical study is the four bar
mechanism. The mechanism consists of a rigid ‘crankshaft, a flexible connecting rod, and
a flexible follower. The initial configuration of the mechanism is shown in Fig. 14. The
geometric and inertia properties of the four bar mechanism are shown in Table 1. The
crankshaft is driven by a moment defined by the function shown in Fig. 15. In this
simulation, one element is used for the crankshaft, 6 elements for the connecting rod, and
4 elements for the follower. The longitudinal and transverse deflection of the mid point of
the connecting rod is shown in Fig. 16. Also, for this multibody example the solution

converges with small number of elements.
7. SUMMARY AND CONCLUSIONS

In this investigation, a shear-deformable beam model based on the non-incremental
absolute nodal coordinate formulation is developed for the large rotation and large
deformation analysis. The beam model leads to exact modeling of the rigid body
dynamics and leads to zero strain under an arbitrary rigid body displacement.
Furthermore, the model relaxes the assumptions of Euler-Bernoulli and Timoshenko
beam theories. The cross-section in the new model does not remain rigid and does not
remain perpendicular to the beam centerline. By using a continuum mechanics approach,
the model leads to a relatively simple expression for the elastic force.

While the model accounts for the effect of the rotary inertia and shear
deformation, the mass matrix remains constant. As a consequence, the centrifugal and
Coriolis forces are identically equal to zero. Two numerical examples, a free falling
pendulum and a multibody four bar mechanism, were used to demonstrate the use of the
new beam model. Numerical results obtained in this study demonstrated that the solutions
obtained using the new model converges much faster as compared to the non-shear-

deformable models presented in previous investigations. Furthermore, significant saving

12




in computer time is achieved by using the more general shear-deformable model that is

based on the nonlinear strain-displacement relationships.
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Table 1. The geometric and inertia properties of the four bar mechanism

Body m (kg) A (m?) I(m* [ (m) E (Pa) v
Crankshaft | 0.681 | 1.257E-03 | 1.257E-07 | 0.200 | 1.000 E+09 | 0.3
Coupler 2.474 | 1.960 E-03 | 3.068 E-07 | 0.900 | 5.000 E+06 | 0.3
Follower 1.470 | 7.068E-0 | 3.976 E-08 | 0.519 | 5.000 E+08 | 0.3
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Fig. 11. Comparison between the results Euler-Bernoulli beam model and shear-
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Fig. 12. Comparison between the results Euler-Bernoulli beam model and shear-
deformable beam for thick cross-section
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Fig. 13. The norm of the vector —g-—r— as function of time
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Fig. 14. The four-bar mechanism at the initial configuration
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Fig. 15. The driving moment applied to the crankshaft
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Fig. 16. The longitudinal and lateral deformation of the mid point of the coupler link
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